Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 15521
1.  
i

Ука­жи­те но­ме­ра пря­мо­уголь­ни­ков, изоб­ра­жен­ных на ри­сун­ках 1−5, при вра­ще­нии ко­то­рых во­круг сто­ро­ны BC по­лу­ча­ет­ся ци­линдр, осе­вым се­че­ни­ем ко­то­ро­го яв­ля­ет­ся квад­рат.

1)

2)

3)

4)

5)

1) 1, 2
2) 1, 3
3) 1, 2, 3
4) 3, 5
5) 4, 5
2.  
i

На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1 см х 1 см изоб­ражён па­рал­ле­ло­грамм. Най­ди­те его пло­щадь в квад­рат­ных сан­ти­мет­рах.

1) 35
2) 15
3) 25
4) 20
5) 30
3.  
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 256°. Най­ди­те гра­дус­ную меру мень­ше­го угла.

1) 104°
2) 76°
3) 128°
4) 34°
5) 38°
4.  
i

Даны квад­рат­ные урав­не­ния:

Ука­жи­те урав­не­ние, ко­то­рое не имеет кор­ней.

1) 4x в квад­ра­те минус 3x минус 3=0
2) 5x в квад­ра­те плюс 20x плюс 20=0
3) 2x в квад­ра­те плюс 3x плюс 12=0
4) 7x в квад­ра­те минус 4x минус 5=0
5) 4x в квад­ра­те плюс 8x плюс 4=0
5.  
i

Одно число мень­ше дру­го­го на 72, что со­став­ля­ет 18% боль­ше­го числа. Най­ди­те мень­шее число.

1) 328
2) 390
3) 900
4) 480
5) 472
6.  
i

По­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-ого члена a_n=3n в квад­ра­те минус 8n плюс 9. Вто­рой член этой по­сле­до­ва­тель­но­сти равен:

1) 12
2) −16
3) 5
4) 16
5) 6
7.  
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 5 : 6 : 7. Най­ди­те гра­дус­ную меру угла ABC.

1) 100°
2) 70°
3) 50°
4) 60°
5) 140°
8.  
i

Даны числа: 5100; 0,0051; 5,1 · 10−4; 51 · 103; 0,51 · 105. Ука­жи­те число, за­пи­сан­ное в стан­дарт­ном виде.

1) 5100
2) 0,0051
3) 5,1 · 10−4
4) 51 · 103
5) 0,51 · 105
9.  
i

Зна­че­ние вы­ра­же­ния 7 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 7 в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка равно:

1) 49
2) 7
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби
4) 7 в сте­пе­ни левая круг­лая скоб­ка минус 18 пра­вая круг­лая скоб­ка
5) 7 в сте­пе­ни левая круг­лая скоб­ка минус 21 пра­вая круг­лая скоб­ка
10.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 64 конец ар­гу­мен­та : ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 65 конец ар­гу­мен­та равно:

1) 4
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 65 конец ар­гу­мен­та конец дроби
3)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 65 конец ар­гу­мен­та конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 65 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
11.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 5 ко­рень из 5 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 5 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 12 ко­рень из 5 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 5 конец дроби

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 5 конец дроби ;
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та ;
3) 16;
4) 26;
5)  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 5 конец дроби .
12.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 8x плюс 16, зна­ме­на­тель: x в квад­ра­те минус 4x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
2)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 4 конец дроби
3)  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: x плюс 4 конец дроби
4)  дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 4 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 4 конец дроби
13.  
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 16.

1) 24
2) 8
3) 12
4) 8 ко­рень из 3
5) 16 ко­рень из 3
14.  
i

Сумма ко­ор­ди­нат точки пе­ре­се­че­ния пря­мых, за­дан­ных урав­не­ни­я­ми 5x плюс 4y= минус 17 и x плюс y=3 левая круг­лая скоб­ка 1 минус y пра­вая круг­лая скоб­ка , равна:

1) 3
2) −5
3) −3
4) 5
5) 2
15.  
i

Стро­и­тель­ная бри­га­да пла­ни­ру­ет за­ка­зать фун­да­мент­ные блоки у од­но­го из трех по­став­щи­ков. Сто­и­мость бло­ков и их до­став­ки ука­за­на в таб­ли­це. При по­куп­ке ка­ко­го ко­ли­че­ства бло­ков са­мы­ми вы­год­ны­ми будут усло­вия вто­ро­го по­став­щи­ка?

 

По­став­щикСто­и­мость

фун­да­мент­ных бло­ков
(тыс. руб. за 1 шт.)

Сто­и­мость до­став­ки

фун­да­мент­ных бло­ков
(тыс. руб. за весь заказ)

12101700
2230950
3285бес­плат­но
1) более 17
2) от 18 до 37
3) от 20 до 55
4) менее 38
5) от 17 до 38
16.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний двой­но­го не­ра­вен­ства  минус 348,7 мень­ше 2,7 плюс 7x мень­ше 24,4.

1) −52
2) −53
3) −47
4) −46
5) −48
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но оси Oy и про­хо­дит через точку A левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 4 пра­вая круг­лая скоб­ка . Зна­че­ние вы­ра­же­ния k + b равно:

1)  минус целая часть: 3, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4
2) 1
3)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
4) 4
5) 16
18.  
i

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 1 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =4 минус x равна (равен):

1) 22
2)  дробь: чис­ли­тель: минус 11 минус ко­рень из: на­ча­ло ар­гу­мен­та: 181 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: минус 11 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 181 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −15
5) 11
19.  
i

Ав­то­мо­биль про­ехал не­ко­то­рое рас­сто­я­ние, из­рас­хо­до­вав 24 л топ­ли­ва. Рас­ход топ­ли­ва при этом со­ста­вил 9 л на 100 км про­бе­га. Затем ав­то­мо­биль су­ще­ствен­но уве­ли­чил ско­рость, в ре­зуль­та­те чего рас­ход топ­ли­ва вырос до 12 л на 100 км. Сколь­ко лит­ров топ­ли­ва по­на­до­бит­ся ав­то­мо­би­лю, чтобы про­ехать такое же рас­сто­я­ние?

20.  
i

Кон­фе­ты в ко­роб­ки упа­ко­вы­ва­ют­ся ря­да­ми, при­чем ко­ли­че­ство кон­фет в каж­дом ряду на 3 боль­ше, чем ко­ли­че­ство рядов. Ди­зайн ко­роб­ки из­ме­ни­ли, при этом до­ба­ви­ли 1 ряд, а в каж­дом ряду до­ба­ви­ли по 2 кон­фе­ты. В ре­зуль­та­те ко­ли­че­ство кон­фет в ко­роб­ке уве­ли­чи­лось на 17. Сколь­ко кон­фет упа­ко­вы­ва­лось в ко­роб­ку пер­во­на­чаль­но?

21.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс y в квад­ра­те =3xy плюс 1,x минус y=2. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x1x2 + y1y2.

22.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 4 ко­рень из 3 .

23.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 135=4 в сте­пе­ни левая круг­лая скоб­ка 2 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .

24.  
i

Пусть x0  — наи­боль­ший ко­рень урав­не­ния \log в квад­ра­те _9 левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 81 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 9 x минус 22=0, тогда зна­че­ние вы­ра­же­ния 3 ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x_0 конец ар­гу­мен­та равно ...

25.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби .

26.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 8 ко­си­нус левая круг­лая скоб­ка альфа плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , если  синус 2 альфа = дробь: чис­ли­тель: 23, зна­ме­на­тель: 32 конец дроби , 2 альфа при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая круг­лая скоб­ка .

27.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |8x минус 23| минус |6x минус 5|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.

28.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства |12 плюс 4x минус x в квад­ра­те | плюс 3 мень­ше 3 умно­жить на |6 минус x| плюс |x плюс 2|.

29.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 23 минус x пра­вая круг­лая скоб­ка боль­ше 3 равно ...

30.  
i

Ре­ши­те урав­не­ние

 дробь: чис­ли­тель: 30x в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 плюс 25 конец дроби =x в квад­ра­те плюс 2 ко­рень из 5 x плюс 8.

В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния x умно­жить на |x|, где x  — ко­рень урав­не­ния.